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ON KREIN-LIKE THEOREMS FOR NONCANONICAL
HAMILTONIAN SYSTEMS WITH CONTINUOUS SPECTRA:

APPLICATION TO VLASOV-POISSON
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at Austin, Austin, TX, USA.

The notions of spectral stability and the spectrum for the Vlasov-Poisson system
linearized about homogeneous equilibria, f0(v), are reviewed. Structural sta-
bility is reviewed and applied to perturbations of the linearized Vlasov operator
through perturbations of f0. We prove that for each f0 there is an arbitrarily
small δ f ′

0 in W 1,1(R) such that f0 + δ f0 is unstable. When f0 is perturbed
by an area preserving rearrangement, f0 will always be stable if the continu-
ous spectrum is only of positive signature, where the signature of the continuous
spectrum is defined as in Morrison and Pfirsch (1992) and Morrison (2000). If
there is a signature change, then there is a rearrangement of f0 that is unstable
and arbitrarily close to f0 with f ′

0 in W .1,1 This result is analogous to Krein’s
theorem for the continuous spectrum. We prove that if a discrete mode embedded
in the continuous spectrum is surrounded by the opposite signature there is an
infinitesimal perturbation in Cn norm that makes f0 unstable. If f0 is stable we
prove that the signature of every discrete mode is the opposite of the continuum
surrounding it.

1. Introduction

The perturbation of point spectra for classical vibration and quan-
tum mechanical problems has a long history (Rayleigh, 1896;
Rellich, 1969). The more difficult problem of assessing the struc-
tural stability of the continuous spectrum in scattering problems
has also been widely investigated (Friedrichs, 1965; Kato, 1966).
Because general linear Hamiltonian systems are not governed
by Hermitian or symmetric operators, the spectrum need not be

This work was supported by the U.S. Dept. of Energy Contract No. DE-FG03-96ER-
54346.

Address correspondence to Philip Morrison, Department of Physics and Institute
for Fusion Studies, 1 University Station C1600, The University of Texas at Austin, Austin,
TX 78712, USA. E-mail: morrison@physics.utexas.edu

466

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f T

ex
as

 a
t A

us
tin

] a
t 1

5:
12

 1
1 

Ju
ly

 2
01

2 



Krein-Like Theorems for Noncanonical Hamiltonian Systems 467

stable and a transition to instability is possible. For finite degree-
of-freedom Hamiltonian systems, the situation is described by
Krein’s theorem (Kreĭn, 1950; Kreĭn and Jakubovič, 1980; Moser,
1958), which states that a necessary condition for a bifurcation to
instability under perturbation is to have a collision between eigen-
values of opposite signature. The purpose of the present article is
to investigate Krein-like phenomena in Hamiltonian systems with
continuous spectra. Of interest are systems that describe continu-
ous media that are Hamiltonian in terms of noncanonical Poisson
brackets (see, e.g., Morrison, 1998, 2005).

Our study differs from that of Grillakis (1990), which consid-
ered canonical Hamiltonian systems with continuous spectra in
a Hilbert space where the time evolution operator is self-adjoint.
The effects of relatively compact perturbations on such a system
were studied and it was proved that the existence of a negative
energy mode in the continuous spectrum caused the system to
be structurally unstable. It was also proved that such systems are
otherwise structurally stable. In addition, our study differs from
analyses of fluid theories concerning point spectra (MacKay and
Saffman, 1986; Kueny and Morrison, 1995) and point and contin-
uous spectra (Hirota and Fukumoto, 2008), the latter using hy-
perfunction theory.

A representative example of the kind of Hamiltonian system
of interest is the Vlasov-Poisson equation (Morrison, 1980), which,
when linearized about stable homogeneous equilibria, gives rise
to a linear Hamiltonian system with pure continuous spectra that
can be brought into action-angle form (Morrison and Pfirsch,
1992; Morrison, 2000, 1994; Morrison and Shadwick, 1994). A def-
inition of signature was given in these works for the continuous
spectrum. In the present article we concentrate on the Vlasov-
Poisson equation, but the same structure is possessed by Euler’s
equation for the two-dimensional fluid, where signature for shear
flow continuous spectra was defined (Balmforth and Morrison,
1998, 2002) as well as, a large class of systems (Morrison, 2003).
Thus, modulo technicalities—the behavior treated here—is ex-
pected to cover a large class of systems.

In Section 2 we review the noncanonical Hamiltonian struc-
ture for a class of systems on a formal level that includes the
Vlasov-Poisson equation as a special case. Linearization about
equilibria, the concept of dynamical accessibility, and the linear
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468 G. I. Hagstrom and P. J. Morrison

Hamiltonian operator T—the main subject of the remainder of
the article—are defined. Next we sketch proofs in varying levels
of detail pertaining to properties of this linear operator for vari-
ous equilibria. In Section 3 we describe spectral stability in gen-
eral terms and analyze the spectrum of T for the Vlasov case. The
existence of a continuous component to the spectrum is demon-
strated and Penrose plots are used to describe the point compo-
nent. In Section 4 we describe structural stability and, in particu-
lar, consider the structural stability of T under perturbation of the
equilibrium state. We show that any equilibrium is unstable under
perturbation of an arbitrarily small function in W .1,1 In Section 5
we introduce the Krein-Moser theorem and restrict it to dynam-
ically accessible perturbations. We prove that equilibria without
signature changes are structurally stable and those with changes
are structurally unstable. In Section 6 we define critical states of
the linearized Vlasov equation that are structurally unstable under
perturbations that are further restricted. We prove that a mode
with the opposite signature of the continuum is structurally un-
stable and that the opposite combination cannot exist unless the
system is already unstable. Finally, in Section 7, we conclude.

2. Noncanonical Hamiltonian Form

The class of equations of interest have a single dependent variable
ζ(x, v, t), such that for each time t , ζ : D → R, where the parti-
cle phase space D is a two-dimensional domain with coordinates
(x, v). The dynamics are assumed to be Hamiltonian in terms of
a noncanonical Poisson bracket of the form

{F , G} =
∫

D
dxdv ζ

[
δF
δζ

,
δG
δζ

]
, (1)

where [ f, g] := fx gv − fvgx is the usual Poisson bracket, the sub-
scripts denote partial differentiation, and δF/δζ denotes the func-
tional derivative of a functional F [ζ]. The equation of motion is
generated from a Hamiltonian functional H[ζ] as follows:

ζt = {ζ,H} = −[ζ, E] , (2)
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Krein-Like Theorems for Noncanonical Hamiltonian Systems 469

where E := δH/δζ . The Poisson bracket (1) is noncanonical: it
uses only a single noncanonical variable ζ , instead of the usual
canonically conjugate pair; it possesses degeneracy reflected in
the existence of Casimir invariants, C =

∫
Ddxdv C(ζ) that satisfy

{F , C} = 0 for all functionals F ; but it does satisfy the Lie-algebraic
properties of usual Poisson brackets. (For further details see Mor-
rison, 1982, 1998, 2003; Holm et al., 1985).

For the Vlasov-Poisson equation we assume D = X ×R, where
X ⊂ R or X = S—the circle; the distinction will not be impor-
tant. The dependent variable is the particle phase space density
f (x, v, t) and the Hamiltonian is given by

H[ f ] = 1
2

∫

X
dx

∫

R
dv v2 f + 1

2

∫

X
dx |φx |2 , (3)

where φ is shorthand for the functional dependence on f ob-
tained through a solution of Poisson’s equation, φxx = 1−

∫
R f dv,

for a positive charge species with a neutralizing background. Us-
ing δH/δ f = E = v2/2 + φ, we obtain

ft = { f,H} = −[ f, E] = −v fx + φx fv , (4)

where, as usual, the plasma frequency and Debye length have
been used to nondimensionalize all variables.

This Hamiltonian form for the Vlasov-Poisson equation was
first published in Morrison (1980). For a discussion of a general
class of systems with this Hamiltonian form to which the ideas of
the present analysis can be applied see Morrison (2003). In a se-
quence of papers (Morrison, 1987, 2000; Morrison and Pfirsch,
1992; Morrison and Shadwick, 1994, 2008; Shadwick and Morri-
son, 1994) various ramifications of the Hamiltonian form have
been explored—notably, canonization and diagonalization of the
linear dynamics to which we now turn.

Because of the noncanonical form, linearization requires ex-
pansion of the Poisson bracket as well as the Hamiltonian. Equi-
libria ζ0 are obtained by extremization of a free energy functional,
F = H + C , as was first done for Vlasov-like equilibria in Kruskal
and Oberman (1958). Writing ζ = ζ0+ζ1 and expanding gives the
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470 G. I. Hagstrom and P. J. Morrison

Hamiltonian form for the linear dynamics

ζ1t = {ζ1, HL}L, (5)

where the linear Hamiltoinian, HL = 1
2

∫
Ddxdv ζ1O ζ1, is the sec-

ond variation of F , a quadratic form in ζ1 defined by the sym-
metric operator O, and {F , G}L =

∫
Ddxdv ζ0[F1, G1] with F1 :=

δF/δζ1. Thus the linear dynamics are governed by the time evo-
lution operator T · := −{ · , HL}L = [ζ0,O · ].

Linearizing the Vlasov-Poisson equation about an homoge-
neous equilibrium, f0(v), gives rise to the system,

f1t = −v f1x + φ1x f ′
0 (6)

φ1xx = −
∫

R
dv f1 , (7)

for the unknown f1(x, v, t). Here f ′
0 := d f0/dv. This is an infinite-

dimensional linear Hamiltonian system generated by the Hamil-
tonian functional:

HL[ f1] = −1
2

∫

X
dx

∫

R
dv

v
f ′
0

| f1|2 + 1
2

∫

X
dx |φ1x |2 . (8)

We concentrate on systems where x is an ignorable coordi-
nate and either Fourier expand or transform. For Vlasov-Poisson
this gives the system

fk t = −ikv fk +
i f ′

0

k

∫

R
dv̄ fk(v̄, t) =: −Tk fk , (9)

where fk(v, t) is the Fourier dual to f1(x, v, t). Perturbation of
the spectrum of the operator defined by Eq. (9) is the primary
subject of this article. The operator Tk is a Hamiltonian operator
generated by the Hamiltonian functional

HL[ fk, f−k] = 1
2

∑

k

(
−

∫

R
dv

v
f ′
0

| fk |2 + |φk |2
)

, (10)
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Krein-Like Theorems for Noncanonical Hamiltonian Systems 471

with the Poisson bracket

{F , G}L =
∞∑

k=1

ik
∫

R
dv f ′

0

(
δF
δ fk

δG
δ f−k

− δF
δ f−k

δG
δ fk

)
. (11)

Observe from (11) that k ∈ N and thus fk and f−k are indepen-
dent variables that are almost canonically conjugate. Thus the
complete system is

fk t = −Tk fk and f−k t = −T−k f−k , (12)

from which we conclude the spectrum is Hamiltonian.

Lemma 2.1 If λ is an eigenvalue of the Vlasov equation linearized about
the equilibrium f ′

0(v), then so are −λ and λ (complex conjugate). Thus
if λ = γ + iω, then eigenvalues occur in the pairs, ±γ and ±iω, for
purely real and imaginary cases, respectively, or quartets, λ = ±γ ± iω,
for complex eigenvalues.

Proof. That −λ is an eigenvalue follows immediately from the
symmetry T−k = −Tk , and that λ is an eigenvalue follows from
Tk fk = −(Tk fk). !

In Morrison and Pfirsch (1992), Morrison and Shadwick
(1994, 2008), and Morrison (2000) it was shown how to scale fk
and f−k to make them canonically conjugate variables. In order to
do this requires the following definition of dynamical accessibility,
a terminology introduced in Morrison and Pfirsch (1989, 1990).

Definition. A particle phase space function k is dynamically ac-
cessible from a particle phase space function h, if k is an area-
preserving rearrangement of h; i.e., in coordinates k(x, v) =
h(X (x, v), V (x, v)), where [X, V ] = 1. A peturbation δh is linearly
dynamically accessible from h if δh = [G, h], where G is the infinites-
imal generator of the canonical transformation (x, v) ↔ (X, V ).

Dynamically accessible perturbations come about by perturb-
ing the particle orbits under the action of some Hamiltonian.
Since electrostatic-charged particle dynamics is Hamiltonian, one
can make the case that these are the only perturbations allowable
within the confines of Vlasov-Poisson theory.
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472 G. I. Hagstrom and P. J. Morrison

Given an equilibrium state f0, linear dynamically accessi-
ble perturbations away from this equilibrium state satisfy δ f0 =
[G, f0] = Gx f ′

0. Therefore assuming the initial condition for the
linear dynamics is linearly dynamically accessible, we can define

qk(v, t) = fk and p k(v, t) = −i f−k/(k f ′
0) (13)

without worrying about a singularity at the zeros of f ′
0 and k = 0.

With the definitions of (13), the Poisson bracket of (11) achieves
canonical from

{F , G}L =
∞∑

k=1

∫

R
dv

(
δF
δqk

δG
δp k

− δF
δp k

δG
δqk

)
. (14)

The full system has the new Hamiltonian H̄ = H + UP in a
frame moving with speed U , where P =

∫
Ddxdv v f . Linearizing

in this frame yields the linear Hamiltonian H̄L = HL + PL, from
which we identify the linear momentum

PL[ fk, f−k] = 1
2

∞∑

k=1

∫

R
dv

k
f ′
0

| fk |2 , (15)

which must be conserved by the linear dynamics. It is easy to show
directly that this is the case.

Lemma 2.2 The momentum PL defined by (15) is a constant of motion,
i.e., {PL, HL} = 0.

Proof. This follows immediately from (12):
∫

Rdv ( fkT−k +
f−kTk) = 0. !

Observe that like the Hamiltonian, HL, the momentum PL is
conserved for each k, which in all respects appears only as a pa-
rameter in our system. Assuming the system size to be L yields
k = 2πn/L with n ∈ N, and, thus, this parameter can be taken
to be in R+/{0}. Alternatively, we could suppose X = R, Fourier
transform, and split the Fourier integral to obtain an expression
similar to (11) with the sum replaced by an integral over posi-
tive values of k. For the present analysis we will not be concerned
with issues of convergence for reconstructing the spatial variation
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Krein-Like Theorems for Noncanonical Hamiltonian Systems 473

of f1(x, v, t), but will only consider k ∈ R+/{0} to be a parame-
ter in our operator. We will see in Section 3 that the operator Tk
possesses a continuous component to its spectrum. However, we
emphasize that this continuous spectrum of interest arises from
the multiplicative nature of the velocity operator, i.e. the term
v fk of Tk , not from having an infinite spatial domain, as is the
case for free particle or scattering states in quantum mechanics.
In the remainder of the article, f will refer to either f1 or fk ,
which will be clear from context, and the dependence on k will be
suppressed, e.g. in Tk , unless k dependence is being specifically
addressed.

3. Spectral Stability

Now we consider properties of the evolution operator T defined
by (9). We define spectral stability in general terms, record some
properties of T , and describe the tools necessary to characterize
the spectrum of T . We suppose fk varies as exp(−iωt), where ω is
the frequency and iω is the eigenvalue. For convenience we also
use u := ω/k, where k ∈ R+. The system is spectrally stable if the
spectrum of T is less than or equal to zero or the frequency is
always in the closed lower half plane. Since the system is Hamilto-
nian, the question of stability reduces to deciding if the spectrum
is confined to the imaginary axis.

Definition. The linearized dynamics of a Hamiltonian system
around some equilibrium solution, with the phase space of so-
lutions in some Banach space B, is spectrally stable if the spectrum
σ(T) of the time evolution operator T is purely imaginary.

Spectral stability does not guarantee that the system is stable
or that the equilibrium f0 is linearly stable. (See, e.g., Morrison,
1998, for general discussion.) The solutions of a spectrally stable
system are guaranteed to grow at most sub-exponentially, and one
can construct a spectrally stable system with polynomial temporal
growth for certain initial conditions. (See, e.g., Degond, 1986, for
analysis of the Vlasov system.)

Spectral stability relies on functional analysis for its defini-
tion, since the spectrum of the operator T may depend on the
choice of function space B. The time evolution operators arising
from the types of noncanonical Hamiltonian systems that are of
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474 G. I. Hagstrom and P. J. Morrison

interest here generally contain a continuous spectrum (Morrison,
2003), and the effects of perturbations that we study can be cat-
egorized by properties of the continuous spectrum of these op-
erators. In general for the operators in Morrison (2003), the op-
erator T is the sum of a multiplication operator and an integral
operator. In the Vlasov case, the multiplicative operator is iv· and
the integral operator, is f ′

0

∫
dv ·. As we will see, the multiplica-

tion operator causes the continuous spectrum to be composed
of the entire imaginary axis except possibly for some discrete
points.

Instability comes from the point spectrum. In particular, the
linearized Vlasov Poisson equation is not spectrally stable when
the time evolution operator has a spectrum that includes a point
away from the imaginary axis, with the necessary counterparts im-
plied by Lemma 2.2. For the operator T this will always be a dis-
crete mode; i.e. an eigenmode associated with an eigenvalue in
the point spectrum.

Theorem 3.1 The one-dimensional linearized Vlasov-Poisson system
with homogeneous equilibrium f0 is spectrally unstable if for some k ∈ R+

and u in the upper half plane, the plasma dispersion relation

ε(k, u) := 1 − k−2
∫

R
dv

f ′
0

v − u
= 0 .

Otherwise it is spectrally stable.

Proof. The details of this proof are given in plasma textbooks.
It follows directly from (6) and (7), and the assumption f1 ∼
exp(ikx − iωt). !

Using the Nyquist method that relies on the argument prin-
ciple of complex analysis, Penrose (1960) was able to relate the
vanishing of ε(k, u) to the winding number of the closed curve
determined by the real and imaginary parts of ε as u runs along
the real axis. Such closed curves are called Penrose plots. The cru-
cial quantity is the integral part of ε as u approaches the real axis
from above:

lim
u→0+

1
π

∫

R
dv

f ′
0

v − u
= H [ f ′

0](u) − i f ′
0(u) ,
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Krein-Like Theorems for Noncanonical Hamiltonian Systems 475
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FIGURE 1 f ′
0 for a Maxwellian distribution.

where H [ f ′
0] denotes the Hilbert transform, H [ f ′

0] =
1
π

−
∫

dv f ′
0/(v − u), where −

∫
:= PV

∫
R indicates the Cauchy princi-

ple value. (See King, 2009, for an in-depth treatment of Hilbert
transforms.) The graph of the real line under this mapping is
the essence of the Penrose plot, and so we will refer to these
closed curves as Penrose plots as well. When necessary to avoid
ambiguity, we will refer to the former as ε-plots.

For example, Figure 1 shows the derivative of the distribu-
tion function, f ′

0, for the case of a Maxwellian distribution, and
Figure 2 shows the contour H [ f ′

0] − i f ′
0(u) that emerges from the

origin in the complex plane at u = −∞, descends, and then wraps
around to return to the origin at u = ∞. From this figure it is ev-
ident that the winding number of the ε(k, u)-plot is zero for any
fixed k ∈ R, and as a result there are no unstable modes.

Making use of the argument principle as described, Penrose
obtained the following criterion:

Theorem 3.2 The linearized Vlasov-Poisson system with homogeneous
equilibrium f0 is spectrally unstable if there exists a point u such that

f ′
0(u) = 0 and −

∫
dv

f ′
0(v)

v − u
> 0 ,

with f ′
0 traversing zero at u. Otherwise it is spectrally stable.

Penrose plots can be used to visually determine spectral
stability. As described, the Maxwellian distribution f0 = e −v2 is
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FIGURE 2 Stable Penrose plot for a Maxwellian distribution.

stable, as the resulting ε-plot does not encircle the origin. How-
ever, it is not difficult to construct unstable distribution func-
tions. The superposition of two displaced Maxwellian distribu-
tions, f0 = e −(v+c)2 + e −(v−c)2 , is such a case. As c increases the
distribution goes from stable to unstable. Figures 3 and 4 demon-
strate how the transition from stability to instability is manifested
in a Penrose plot. The two examples are c = 3/4 and c = 1. (Note,
the normalization of f0 only affects the overall scale of the Pen-
rose plots and so is ignored for convenience.) It is evident from
Figure 4 that for some k ∈ R the ε-plot (which is a displacement
of the curve shown by multiplying by −k−2 and adding unity) will
encircle the origin, and thus will be unstable for such k-values.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

H [f ′
0]

−
f
′ 0

FIGURE 3 Penrose plot for a stable superposition of Maxwellian distributions.
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FIGURE 4 The unstable Penrose plot corresponding to two separated Maxwell
distributions.

We now are positioned to completely determine the spec-
trum. For convenience we set k = 1 when it does not affect the
essence of our arguments, and consider the operator T : f +→
iv f − i f ′

0

∫
f in the space W 1,1(R), but we also discuss the space

L1(R). The space W 1,1(R) is the Sobolev space containing the
closure of functions under the norm ‖ f ‖1,1 = ‖ f ‖1 + ‖ f ′‖1. Thus
it contains all functions that are in L1(R) whose weak derivatives
are also in L1(R). First we establish the expected facts that T is
densely defined and closed.

In W 1,1 the operator T is the sum of the multiplication op-
erator and a bounded operator—it is densely defined and closed
because the multiplication operator is densely defined and closed
in these spaces, where

D1(T) := { f |v f ∈ W 1,1(R)}.

Theorem 3.3 The operator T : W 1,1(R) → W 1,1(R) with domain
D1(T) is both (i) densely defined and (ii) closable.

Proof. (i) The set of all smooth functions with compact support,
C∞

c (R) is a subset of D1. This set is dense in W 1,1(R) so D1 is dense
and T is densely defined. (ii) The operator T is closable if the
operator v is closable because T and v differ by a bounded oper-
ator. The multiplication operator v is closed if for each sequence
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478 G. I. Hagstrom and P. J. Morrison

fn ⊂ W 1,1(R) that converges to 0 either v fn converges to 0 or v fn
does not converge. Suppose v fn converges. At each point fn con-
verges to 0. Therefore v fn converges to 0 at each point, so v fn
converges to 0 if it converges. !

Therefore some domain D exists such that the graph (D, TD)
is closed.

In determining the spectrum of the operator T , denoted
σ(T), we split the spectrum into point, residual, and continuous
components as follows.

Definition. For λ ∈ σ(T) the resolvent of T is R(T, λ) = (T −
λI )−1, where I is the identity operator. We say λ is (i) in the point
spectrum, σp (T), if T − λI fails to be injective. (ii) In the residual
spectrum, σr (T), if R(T, λ) exists but is not densely defined. (iii)
In the continuous spectrum, σc (T), if R(T, λ) exists and is densely
defined but unbounded.

Using this definition we characterize the spectrum of the op-
erator T .

Theorem 3.4 The component σp (T) consists of all points λ = iu ∈ C
where 1 − k−2

∫
Rdv f ′

0/(v − u) = 0, σc (T) consists of all λ = iu with
u ∈ R \ (−iσp (T) ∩ R), and σr (T) contains all points λ = iu in the
complement of σp (T) ∪ σc (T) that satisfy f ′

0(u) = 0.

Proof. By the Penrose criterion we can identify all the points in
the point spectrum. If 1 − k−2

∫
R dv f ′

0/(v − u) = 0 then iu = λ ∈
σp (T). Because the system is Hamiltonian these modes will occur
for the linearized Vlasov-Poisson system in quartets (two for Tk
and two for T−k), as follows from Lemma 2.2. It is possible for
there to be discrete modes with real frequencies, and these will
occur in pairs. If for real u the map u +→ ε passes through the
origin then there will be an embedded mode.

For convenience we drop the wavenumber subscript k on fk
and add the subscript n to identify fn as an element of a sequence
of functions that converges to zero with, for each n, support con-
tained in an interval of length 2ε(n) surrounding the point u and
zero average value. Let u ∈ R and choose the sequence { fn} so
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Krein-Like Theorems for Noncanonical Hamiltonian Systems 479

that ε(n) → 0. Then for each n

‖R(T, iu)‖ ≥ ‖ fn‖1,1

‖(v − u) fn‖1,1

≥ ‖ fn‖1,1

‖v − u‖W 1,1(u−ε,u+ε)‖ fn‖1,1

= 1
‖v − u‖W 1,1(u−ε,u+ε)

.

In the expression, W 1,1(u − ε, u + ε) refers to the integral of
| f |+| f ′| over the interval (u−ε, u+ε). Therefore the resolvent is
an unbounded operator and iu = λ is in the spectrum. If the fre-
quency u has an imaginary component iγ then ‖R(T, iu)‖ < 1/γ ,
so unless iu = λ is part of the point spectrum it is part of the re-
solvent set.

The residual spectrum of T is contained in the point spec-
trum of T ∗. The dual of W 1,1 is the space W −1,1 defined by pairs
(g, h) ∈ W −1,1 with ‖(g, h)‖−1,1 < ∞ (Adams, 2003). The opera-
tor T ∗(g, h) = i(vg − h +

∫
(g f ′

0 − h f ′′
0 )dv, −vh) is the adjoint of

T . If we search for a member iu = λ of the point spectrum we
get two equations, one of which is (v − u)h = 0. This forces h = 0
because h cannot be a δ-function in W −1,1. The other equation is
then (v −u)g +

∫
g f ′

0dv = 0, which can only be true if the integral
is zero or if (v − u)g is a constant. This g = 1

v−u and the resulting
equation for u is the same equation as that for the frequency of
the point modes of T . If the integral is zero then g = δ(v − u) is
a solution when f ′

0(u) = 0. Therefore the residual spectrum con-
tains the points λ = iu satisfying f ′

0(u) = 0. !

This characterization of the spectrum fails in Banach spaces
with less regularity than W 1,1, such as Lp spaces, because the Dirac
δ is not contained in the dual space. In this case the residual spec-
trum vanishes because σp (T ∗) = σp (T). This calculation is nearly
identical to that of Degond (1986), who characterizes the residual
spectrum slightly differently than we do. In any event, the result
is that the Penrose criterion determines whether T is spectrally
stable. If the winding number of the ε-plot is positive, then there
is spectral instability, and if it is zero there is spectral stability.
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480 G. I. Hagstrom and P. J. Morrison

4. Structural Stability

Spectral stability characterizes the linear dynamics of a nonlinear
Hamiltonian system in a neighborhood of an equilibrium. The
main question now is to determine when a spectrally stable sys-
tem can be made spectrally unstable with a small perturbation.
When this is impossible for our choice of allowed perturbations,
we say the equilibrium is structurally stable, and when there is an
infinitesimal perturbation that makes the system spectrally unsta-
ble we say that the equilibrium is spectrally unstable. We can make
this more precise by stating it in terms of operators on a Banach
space.

Definition. Consider an equilibrium solution of a Hamiltonian
system and the corresponding time evolution operator T for the
linearized dynamics, with a phase space some Banach space B.
Suppose that T is spectrally stable. Consider perturbations δT of
T and define a norm on the space of such perturbations. Then
we say that the equilibrium is structurally stable under this norm if
there is some δ > 0 such that for every ‖δT‖ < δ the operator T +
δT is spectrally stable. Otherwise the system is structurally unstable.

Because we are dealing with physical systems it makes sense
to have physical motivation for the choice of norm on the space
of perturbations. In this article we are interested in perturbations
of the Vlasov equation through changes in the equilibrium. This
choice is motivated by the Hamiltonian structure of the equations
and Krein’s theorem for finite-dimensional systems. In general the
space of possible perturbations is quite large, but perturbations of
equilibria give rise to operators in certain Banach spaces and mo-
tivate the definition of norm. Even in the case of unbounded per-
turbations such a norm may exist (see Kato, 1966, for instance).

Consider a stable equilibrium function f0. We will consider
perturbations of the equilibrium function and the resulting per-
turbation of the time evolution operator. Suppose that the time
evolution operator of the perturbed system is T + δT . In the func-
tion space that we will consider, these perturbations are bounded
operators and their size can be measured by the norm ‖δT‖. This
norm will be proportional to the norm of ‖δ f ′

0‖, where δ f0 is the
perturbation of the equilibrium.
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Krein-Like Theorems for Noncanonical Hamiltonian Systems 481

Definition. Consider the formulation of the linearized Vlasov-
Poisson equation in the Banach space W 1,1(R) with a spectrally
stable homogeneous equilibrium function f0. Let T f0+δ f0 be the
time evolution operator corresponding to the linearized dynam-
ics around the distribution function f0 + δ f0. If there exists some
δ depending only on f0 such that T f0+δ f0 is spectrally stable when-
ever ‖δTδ f0‖ =‖ T f0 −T f0+δ f0‖ < δ, then the equilibrium f0 is struc-
turally stable under perturbations of f0.

The aim of this work is to characterize the structural stability
of the linearized Vlasov-Poisson equation. We will prove that if the
perturbation function is some homogeneous δ f0 and the norm
is W 1,1 (and L1 as a consequence) every equilibrium distribution
function is structurally unstable to an infinitesimal perturbation
in this space. This fact will force us to consider more restricted
sets of perturbations.

4.1. Winding Number

We need to compute the winding number of Penrose plots and
the change in winding number under a perturbation, both in this
section and in the rest of the article. We use the fact that one way
to compute the winding number is to draw a ray from the origin to
infinity and to count the number of intersections with the contour
accounting for orientation.

Lemma 4.1 Consider an equilibrium distribution function f ′
0. The

winding number of the Penrose ε-plot around the origin is equal to∑
u sgn( f ′′

0 (u)) for all u ∈ R−, satisfying f ′
0(u) = 0.

To calculate the winding number of the Penrose ε-plot using
this lemma one counts the number of zeros of f ′

0 on the nega-
tive real line and adds them with a positive sign if f ′′

0 is positive,
a Penrose crossing from the upper half plane to the lower half
plane; a negative sign if f ′′

0 is negative, a crossing from the lower
half plane to the upper half plane; and zero if u is not a crossing
of the x-axis, a tangency. This lemma comes from the following
equivalent characterization of the winding number from differen-
tial topology (Guillemin and Pollack, 1974).
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482 G. I. Hagstrom and P. J. Morrison

Definition. If X is a compact, oriented, l -dimensional manifold
and f : X → Rl+1 is a smooth map, the winding number of f
around any point z ∈ Rl+1 − f (X ) is the degree of the direction
map u : X → Sl given by u(x) = f (x)−z

| f (x)−z| .

In our case the compact manifold is the real line plus the
point at ∞ and l = 1. The degree of u is the intersection number
of u with any point on the circle taken with a plus sign if the differ-
ential preserves orientation and a minus sign if it reverses it. The
lemma is just a specialization of this definition to the negative x -
direction on the circle. If more than one derivative of f0 vanishes
at a zero of f ′

0 there is a standard procedure for calculating the
winding number by determining if there is a sign change in f ′

0 at
the zero.

4.2. Structural Instability of General f0

In a large class of function spaces it is possible to create infinites-
imal perturbations that make any equilibrium distribution func-
tion unstable. This can happen in any space where the Hilbert
transform is an unbounded operator. In these spaces there will
be an infinitesimal δ f0 such that H [δ f ′

0] is order one at a zero
of f ′

0. Such a perturbation can turn any point where f ′
0 = 0 into

a point where H [ f ′
0 + δ f ′

0] > 0 as well. Because δ f ′
0 is small and

H [δ f ′
0] is not small only within a small region, the only effect on

the Penrose plot will be to move the location of the zero. Thus,
such a perturbation will increase the winding number and cause
instability.

We will explicitly demonstrate this for the Banach space
W 1,1(R) and, by extension, the Banach space L1 ∩ C0. This will
imply that any distribution function is infinitesimally close to in-
stability when the problem is set in one of these spaces, implying
the structural instability of every distribution function.

Suppose we perturb f0 by a function δ f0. The resulting
perturbation to the operator T is the operator mapping f to
δ f ′

0

∫
dv f . In the space W 1,1 this is a bounded operator and thus

we take the norm of the perturbing operator to be ‖δ f ′
0‖1,1. Now

we introduce a class of perturbations that can be made infinitesi-
mal, but have Hilbert transform of order unity.

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f T

ex
as

 a
t A

us
tin

] a
t 1

5:
12

 1
1 

Ju
ly

 2
01

2 



Krein-Like Theorems for Noncanonical Hamiltonian Systems 483

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

0.15

v

χ

FIGURE 5 The perturbation χ for ε = e −10, h = d = .1.

Consider the function χ(v, h, d, ε) defined by

χ =






hv/ε |v| < ε
h sgn(v) ε < |v| < d + ε
h + d/2 + ε/2 − v/2 2h + d + ε > v > d + ε
−h − d/2 − ε/2 − v/2 2h + d + ε > −v > d + ε
0 |v| > 2h + d + ε

.

Figures 5 and 6 show the graph of χ and its Hilbert transform,
H [χ], respectively.

Lemma 4.2 If we choose d = h and ε = e −(1/h), then for any δ, γ > 0
we can choose an h such that ‖χ‖1,1 < δ and −

∫
dv χ/v > 1−O(h), and

|−
∫

dv χ/(u − v)| < |γ /u| for |u| > |2h + d + ε|.

FIGURE 6 The Hilbert transform of χ .
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484 G. I. Hagstrom and P. J. Morrison

Proof. In the space W 1,1 the function χ has norm 2h2 +2hd +hε+
4h, which is less than any δ for small enough h. We can compute
the value of the Hilbert transform of this function at a given point
u by calculating the principal values:

−
∫

dv
χ

v − u
= hu

ε
log

( |u − ε|
|u + ε|

)
+ h log

( |d + ε − u||u + d + ε|
|ε + u||ε − u|

)

+ 1
2

(d + ε + 2h − u) log
( |d + ε + 2h − u|

|d + ε − u|

)

+ 1
2

(d + ε + 2h + u) log
( |d + ε + 2h + u|

|d + ε + u|

)
. (16)

We analyze the asymptotics of this function as h, d, and ε go to
zero, with the desiderata that (i) the norm of χ goes to zero,
(ii) the maximum of the Hilbert transform of χ is O(1), and
(iii) there is a band of vanishing width around the origin outside
of which the Hilbert transform can be made arbitrarily close to
zero.

Note that (16) can be written as a linear combination of trans-
lates of the function x log x:

−
∫

dv
χ

v − u
= h

ε
((u − ε) log(|u − ε|) − (u + ε) log(|u + ε|))

− 1
2

(d + u + ε) log(|d + u + ε|)

− 1
2

(d − u + ε) log(|d − u + ε|)

+ 1
2

(d + u + ε + 2h) log(|d + u + ε + 2h|)

+ 1
2

(d − u + ε + 2h) log(|d − u + ε + 2h|) . (17)

The function x log x has a local minimum for positive x at x = 1/e .
This is the point at which the function is most negative. It has ze-
ros at x = 0 and x = 1. For values of u, d, ε, h close to zero all
of the arguments of the log functions are less than 1/e . There-
fore, for |u| < d + ε + 2h the x log x terms are all monotonically
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Krein-Like Theorems for Noncanonical Hamiltonian Systems 485

decreasing functions of the argument x. Of the terms of (17),
h
ε
((u−ε) log(|u−ε|)−(u+ε) log(|u+ε|)) has by far the largest co-

efficient as long as ε is much smaller than h. We choose h = d and
ε = 0(e −1/h). Then the terms that do not involve ε are all smaller
than (6h + ε) log(6h + ε). With these choices χ satisfies

χ(0) = 2 − (h + e −1/h) log(|h + e −1/h|)
+ (3h + e −1/h) log(|3h + e −1/h|)

= 2 + O(h log h) .

Consider the pair of functions −(u+c) log(|u+c |)+(u−c) log(|u−
c |). The derivative with respect to u is − log(|u+ c |)+ log(|u− c |).
This is zero for u = 0 and for u > 0 it is always negative and the
pair is always decreasing, and for small values of h the pair is guar-
anteed to be positive. Suppose that u > ε. Then we can bound the
term with the h/ε coefficient:

h
ε

∣∣(u − ε) log(|u − ε|) − (u + ε) log(|u + ε|)
∣∣

=
∣∣∣∣
h
ε

(u − ε) log
|u − ε|
|u + ε|

− 2ε log(|u + ε|)
∣∣∣∣

= h
ε

∣∣∣∣(u − ε) log
1 − ε

u

1 + ε
u

− 2ε log(|u + ε|)
∣∣∣∣

<
h
ε

∣∣(u − ε) log(e −ε/u)
∣∣ + 2

∣∣h log(|u + ε|)
∣∣

= h(u − ε)
u

+ 2
∣∣h log(|u + ε|)

∣∣ .

For u >> ε, for example if u = O(h2), this term is O(h log h).
Therefore, for |u| > h2 we have χ = O(h log h), which can be
made arbitrarily small. When |u| > 3h+ε the function χ decreases
at least as fast as O(1/u). With these choices of h, d, and ε, the
norm of χ is O(h), which proves the Lemma. !

Now we state the theorem that any equilibrium is strucutrally
unstable in both the spaces W 1,1 and L1∩C0. In order to prove this
theorem we will make use of a result from Morse theory Hirsch
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486 G. I. Hagstrom and P. J. Morrison

(1976). A Morse function is a function that has no degenerate
critical points.

Lemma 4.3 Let M be a smooth manifold. The set of Morse functions is
open and dense in the space Cr (M, R).

Therefore if f0 is C2 there is an infinitesimal perturbation f1
such that f0+ f1 is a Morse function. Because the winding number
is stable under homotopy there is an f1 such that all the zeros
of f0 + f1 are non-degenerate and the winding number of the
Penrose plot is the same as that of f0. Therefore we will assume
that f0 is a Morse function. A consequence of this assumption is
that all the zeros f ′

0 are isolated.

Theorem 4.4 A stable equilibrium distribution f0 ∈ C2 is structurally
unstable under perturbations of the equilibrium in the Banach spaces
W 1,1 and L1 ∩ C0.

Proof. If f0 is stable then the Penrose ε-plot of f ′
0 has a winding

number of zero. Because the point at ∞ corresponds to a cross-
ing where f ′

0 goes from negative to positive there exists a point
u0 with f ′

0(u0) = 0 that is an isolated zero, H [ f ′
0](u0) < 0, and

f ′′
0 (u0) < 0. Let F = sup | f ′′

0 |. Choose h to always be smaller than
the distance from u0 to the nearest 0 of f ′

0. Then if ε = O(e −1/h)
and d = h the support of χ(u − u0) will contain only one zero of
f ′
0. For h small enough the slope of χ at u0 will be greater than F so

that the function f ′
0 +χ will be positive for u in the set (u0, u+) for

some u+ in the support of χ . Similarly f ′
0 +χ will be negative for u

in the set (u−, u0) for some u− in the support of χ . Because χ has
compact support the function f ′

0+χ is positive in a neighborhood
outside the support of χ so that the intermediate value theorem
guarantees one additional zero of the function f ′

0 + χ for u > u0
and also for u < u0. Choose χ so that this Hilbert transform of
f ′
0 + χ is positive at the point u0 and h is small enough that it is

negative before the next zero of f ′
0 + χ on either side of u0. Then

the winding number of f ′
0 + χ is positive because an additional

positive crossing has been added on the negative real line.
Because the norm of χ is O(h) in both W 1,1 and L1 the dis-

tribution f0 is unstable to an arbitrarily small perturbation and is
therefore structurally unstable. !
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FIGURE 7 f ′
0 + χ for a Maxwellian distribution.

Thus we emphasize that we can always construct a perturba-
tion that makes our linearized Vlasov-Poisson system unstable. For
the special case of the Maxwellian distribution, Figure 7 shows
the perturbed derivative of the distribution function and Figure 8
shows the Penrose plot of the unstable perturbed system. Observe
the two crossings created by the perturbation on the positive axis
as well as the negative crossing arising from the unboundedness
of the perturbation.

In some sense Theorem 4.4 represents a failure of our class of
perturbations to produce any interesting structure for the Vlasov
equation. Indeed signature appears to play no role in delineat-
ing bifurcation to instability. In order to derive a nontrivial re-
sult we develop a new theory analogous to the finite-dimensional

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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−0.8

−0.6

−0.4

−0.2

0

0.2
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1

H [f ′
0 +χ]

−
f
′ 0
−
χ

FIGURE 8 Penrose plot for perturbed Maxwellian.
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488 G. I. Hagstrom and P. J. Morrison

Hamiltonian perturbation theory developed by Krein and Moser.
This new theory involves a restriction to dynamically accessi-
ble perturbations of the equilibrium state. This is natural since
the noncanonical Hamiltonian structure can be viewed as the
union of canonical Hamiltonian motions (on symplectic leaves)
labelled by the equilibrium state—to compare with traditional
finite-dimensional theory requires restriction to the given canon-
ical Hamiltonian motion under consideration.

5. The Kreĭn-Moser Theorem

For linear finite-dimensional Hamiltonian systems, Hamilton’s
equations are a set of first order linear ordinary differential equa-
tions (ODEs). If the Hamiltonian is time-independent, then the
behavior of solutions is characterized by the eigenfrequencies. If
all the eigenfrequencies are on the real axis and nondegenerate,
then the system will be stable. If there are degenerate eigenvalues
the system will be stable as long as the time evolution operator
does not have any nontrivial Jordan blocks, but there will be sec-
ular growth if it does. Any complex eigenfrequencies will lead to
instability. The Hamiltonian of a linear finite-dimensional Hamil-
tonian system is a quadratic form in the canonical variables. If we
consider perturbations of the coefficients of the quadratic form
it is trivial to define a notion of small perturbations, as the result-
ing perturbation of the Hamiltonian will be a bounded operator.
Kreĭn and Moser independently proved a theorem characterizing
the structural stability of these systems in terms of a signature, a
quantity that amounts to the sign of the energy evaluated on the
eigenvector of a mode. The original theorem described the stabil-
ity in terms of a quantity called the Kreĭn signature, which is equiv-
alent to the sign of the energy (Sturrock, 1958, 1960; MacKay,
1986; Morrison and Kotschenreuther, 1990). It is of historical in-
terest to note that the fact that bifurcations to instability occur
through collisions of modes of opposite sign was observed by Stur-
rock (1958, 1960) in the plasma physics literature.

Theorem 5.1 (Kreĭn-Moser) Let H define a stable linear finite-
dimensional Hamiltonian system. Then H is structurally stable if all
the eigenfrequencies are nondegenerate. If there are any degeneracies, H
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Krein-Like Theorems for Noncanonical Hamiltonian Systems 489

is structurally stable if the assosciated eigenmodes have energy of the same
sign. Otherwise H is structurally unstable.

This Kreĭn-Moser theorem gives a clear picture of the behav-
ior of these systems under small perturbations. The eigenfrequen-
cies move around, but remain confined to the real line unless
there is a collision between a positive energy and negative energy
mode, in which case they may leave the axis. This theorem was first
proved by Kreĭn in the early 1950s and was later rediscovered by
Moser in the late 1950s. Our goal is to place the perturbation the-
ory of infinite-dimensional Hamiltonian systems in the language
of the finite-dimensional theory.

The appropriate definition of signature for the continuous
spectrum of the Vlasov-Poisson equation was introduced in Mor-
rison and Pfirsch (1992) and Morrison (2000) (see also Morrison
and Shadwick, 2008), where an integral transform was also intro-
duced for constructing a canonical transformation to action-angle
variables for the infinite-dimensional system. The transformation
is a generalization of the Hilbert transform and it can be used to
show that the linearized Vlasov-Poisson equation is equivalent to
the system with the following Hamiltonian functional:

HL =
∞∑

k=1

∫

R
du σk(u)ωk(u)Jk(u, t) , (18)

where ωk(u) = |ku| and σk(u) = −sgn(kuf ′
0(u)) is the analog of

the Kreĭn signature corresponding to the mode labeled by u ∈ R.
(Note, the transformation can always be carried out in a frame
where f ′

0(0) = 0. Because the Hamiltonian does not transform as
a scalar for frame shifts, which are time-dependent transforma-
tions, signature is frame dependent. The Hamiltonian in a shifted
frame is obtained by adding a constant times the momentum PL of
(15) to HL. Later we will see that Hamiltonians that can be made
sign definite in some frame are structurally stable in a sense to be
defined.)

Definition 1. Suppose f ′
0(0) = 0. Then the signature of the point

u ∈ R is −sgn(uf ′
0(u)).

Figure 9 illustrates the signature for a bi-Maxwellian distribu-
tion function.
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FIGURE 9 Signature for a bi-Maxwellian distribution function.

5.1. Dynamical Accessibility and Structural Stability

Now we discuss the effect of restricting to dynamically accessible
perturbations on the structural stability of f0. In this work we only
study perturbations of f0 that preserve homogeneity. Because dy-
namically accessible perturbations are area-preserving rearrange-
ments of f0, it is impossible to construct a dynamically accessible
perturbation for the Vlasov equation in a finite spatial domain
that preserves homogeneity.

To see this we write a rearrangement as (x, v) ↔ (X, V ),
where V is a function of v alone. Because [X, V ] = 1 and V (v)
is not a function of x, we have V ′∂X/∂x = 1, or X = x/V ′. If the
spatial domain is finite, this map is not a diffeomorphism unless
V ′ = 1. In the infinite spatial domain case, this is not a problem
and these rearrangments exist. First we note that a rearrangement
cannot change the critical points of f0.

Lemma 5.2 Let (X, V ) be an area preserving diffeomorphism, and let V
be homogeneous. Then the critical points of f0(V ) are the points V −1(vc ),
where vc is a critical point of f0(v).

Proof. By the chain rule d f0(V (v))/dv = V (v)′ f ′
0(V (v)). The

function V ′ 1= 0 because (X, V ) must be a diffeomorphism.
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Krein-Like Theorems for Noncanonical Hamiltonian Systems 491

Therefore the critical points occur when f ′
0(V ) = 0 or at points

v = V −1(vc ). !

Consider the perturbation χ that was constructed earlier. If
vc is a nondegenerate critical point of f0 such that f ′′

0 (vc ) < 0,
then we want to prove that there is a rearrangement V such that
f0(V ) = f0(v) +

∫ v
−∞ χ(v′ − vc )dv′ or that d f0(V )/dv = f ′

0(v) +
χ(v − vc ). Such a rearrangement can be constructed as long as
the parameters defining χ , the numbers h, d, ε, are chosen such
that f ′

0(v) + χ(v − vc ) has the same critical points as f ′
0(v). Using

Morse theory it is possible to construct a V so that f0(V ) = f0(v)+∫
χ + O((v − vc )3), where O((v − vc )3) has compact support and

is smaller than f0(v) − f ′′
0 (vc )(v − vc )2/2.

Theorem 5.3 Let vc be a nondegenerate critical point of f0 with
f ′
0(vc ) < 0. Then there exists a rearrangement V such that f0(V ) =

f0(v) +
∫

χ + O((v − vc )3, where O is defined as above.

We omit the proof but it is a simple application of the Morse
lemma. In order to apply the Morse lemma f0 must be C2. This
is not restrictive for practical applications where typically f0 is
smooth. The rearrangement of f0 can also be made to be smooth
if desired.

Using this result we prove a Kreĭn-like theorem for dynami-
cally accessible perturbations in the W 1,1 norm.

Theorem 5.4 Let f0 be a stable equilibrium distribution function for the
Vlasov equation on an infinite spatial domain. Then f0 is structurally
stable under dynamically accessible perturbations in W 1,1, if there is only
one solution of f ′

0(v) = 0. If there are multiple solutions, f0 is structurally
unstable and the unstable modes come from the zeros of f ′

0 that satisfy
f ′′
0 (v) < 0.

Proof. Suppose that f ′
0 has only one zero on the real line. Because

f0 is an equilibrium this zero will have f ′′
0 > 0. Because a dynam-

ically accessible perturbation can never increase the number of
critical points, it will be impossible to change the winding number
of the Penrose plot to a positive number. Therefore f0 is struc-
turally stable.

Suppose that f ′
0 = 0 has more than one solution on the real

axis. Using the previous theorem perturb f ′
0 by χ(v − vc ) in a

neighborhood of a critical point vc with f ′′
0 (vc ) < 0. This will

increase the winding number to 1 since it will add a positively
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492 G. I. Hagstrom and P. J. Morrison

oriented crossing on the negative real axis for the correct choices
of h, d, and ε in the definition of χ . The norm of χ can be made as
small as necessary and therefore f0 is structurally unstable. Since
no other critical points with f ′′

0 < 0 can be created the only criti-
cal points that lead to instabilities are the ones that already exist
having f ′′

0 < 0. !

The implication of this result is that in a Banach space where
the Hilbert transform is an unbounded operator the dynamical
accessibility condition makes it so that a change in the Kreĭn sig-
nature of the continuous spectrum is a necessary and sufficient
condition for structural instability. The bifurcations do not occur
at all points where the signature changes, however. Only those
that represent valleys of the distribution can give birth to unstable
modes.

6. Kreĭn Bifurcations in the Vlasov Equation

We identify two critical states for the Penrose plots that corre-
spond to the transition to instability. In these states the system may
be structurally unstable under infinitesimal perturbations of f ′

0 in
the Cn norm for all n. The first critical state corresponds to the ex-
istence of an embedded mode in the continuous spectrum. If the
equilibrium is stable, then such an embedded mode corresponds
to a tangency of the Penrose plot to the real axis at the origin.
If the system is perturbed so that the tangency becomes a pair of
transverse intersections, then the winding number of the Penrose
plot would jump to 1 and the system would be unstable. Consid-
ering a parametrized small perturbation, we see that the value of
k for the unstable mode will correspond to some value of k 1= 0
for which the embedded mode exists. Figures 10 and 11 illustrate
a critical Penrose plot for a bifurcation at k 1= 0. We explore this
bifurcation in Section 6.1.

Another critical state occurs when H [ f ′
0] = 0 at a point

where f ′
0 transversely intersects the real axis. If the Hilbert trans-

form of f ′
0 is perturbed, there will be a crossing with a negative

H [ f ′
0], and the winding number will be positive for some k. This

mode enters through k = 0 because the smaller the perturbation
of H [ f ′

0] the smaller k must be for Tk to be unstable. Figure 12
is a critical Penrose plot corresponding to the bi-Maxwellian
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FIGURE 10 Critical Penrose plot for a k 1= 0 bifurcation.

distribution with the maximum stable separation. We explore this
kind of bifurcation in Section 6.3.

6.1. Bifurcation at k 1= 0

The linearized Vlasov equation can support neutral plasma modes
embedded within the continuous spectrum. The condition for
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FIGURE 11 Close up of a critical Penrose plot for a k 1= 0 bifurcation.
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FIGURE 12 Critical Penrose plot for a bi-Maxwellian distribution function.

existence of a point mode is the vanishing of the plasma disper-
sion relation on the real axis,

ε(u) = 1 − H [ f ′
0] + i f ′

0 = 0 . (19)

If the spatial domain is unbounded the point modes will be ana-
logues of the momentum eigenstate solutions of the Schrodinger
equation and have infinite energy. Any violation of the Penrose
criterion will guarantee the existence of zeros of the plasma dis-
persion function on the real axis because k can take any value in
this case.

If the plasma dispersion relation vanishes at some u and
f ′′
0 (u) = 0, there is an embedded mode in the continuous spec-

trum. The signature of the continuous spectrum will not change
signs at the frequency of the mode, and we will extend the def-
inition of signature to the point u even though f ′

0(u) = 0. The
signature of an embedded mode is given by sgn(u ∂εR/∂u) (see
Morrison and Pfirsch, 1992; Shadwick and Morrison, 1994). The
signature of the continuous spectrum is −sgn(uf ′

0). These signa-
tures are the same if the value of f ′

0 in a neighborhood of its zero
is the same sign as H [ f ′′

0 ].
We will prove that if f0 is stable and mildly regular, it is impos-

sible for there to be a discrete mode embedded in the continuous
spectrum with signature that is the same as the signature of the
continuous spectrum surrounding it. The proof has a simple con-
ceptual outline. Suppose that there exists a discrete mode with the
same signature as the continuum. Then there exists some point u
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Krein-Like Theorems for Noncanonical Hamiltonian Systems 495

satisfying f ′
0(u) = 0, −sgn( f ′

0) = sgn(∂εR/∂u) in a neighborhood
of u, and H [ f ′

0](u) = 0. Perturbations of f ′
0 centered around this

point will give the Penrose plot a negative winding number, con-
tradicting the analyticity of the plasma dispersion function in the
upper half plane. We need f ′

0 to be Hölder continuous so that the
Penrose plot is continuous and for the plasma dispersion function
to converge uniformly to its values on the real line.

Lemma 6.1 Let g be a function defined on the real line such that g is
Hölder and let h = H [ f ]. Then the functions gz , hz that are the solutions
of the Laplace equation in the upper half plane satisfying fz = f and
gz = g on the real line converge uniformly to f and g.

Proof. Because g can be defined as a bounded and continuous
function on R ∪ {∞} and the gz are analytic, the gz must converge
uniformly to g . The same properties hold for h and hz must con-
verge to h = H [g]. !

Lemma 6.2 Let f ′
0 be the derivative of an equilibrium distribution func-

tion and let f ′
0 be sufficiently regular such that the assumptions of the

previous lemma are true. Then the Penrose plot that is associated with f ′
0

cannot have a negative winding number.

Proof. The Penrose plot associated with f ′
0 is the image of the real

line under the map ε(u) = 1 − H [ f ′
0] + i f ′

0. This is naturally de-
fined as an analytic function if u is in the upper half plane. By
the argument principle the image of R + i t under this map has a
non-negative winding number. Both the real and imaginary parts
of this map converge uniformly to their values on the real line.
Therefore the Penrose plot is a homotopy of these contours, mak-
ing it possible to parametrize the contours by some t such that
the distance from the Penrose plot to the contour produced by
the image of R + iδ is always less than some η(t) that goes to 0.
If the winding number of the Penrose plot were negative, there
would be some t for which the winding number was negative be-
cause the winding number is a stable property under homotopy,
contradicting the analyticity of the map. !

Theorem 6.3 Let f ′
0 and f ′′

0 be Hölder continuous. If f0 is stable there
are no discrete modes with signature the same as the signature of the
continuum.
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496 G. I. Hagstrom and P. J. Morrison

Proof. Because f0 is stable the winding number of the Pen-
rose plot is equal to 0. Assume that there is a discrete mode
with the same signature as the contiuum surrounding it. Then
there exists a point u with f ′

0(u) = 0, f ′′
0 (u) = 0, and sgn( f ′

0(u +
δ)dH [ f ′

0](u)/du) = 1. Then we search for a function g such that
the Penrose plot of f ′

0 + g has a negative winding number. If
such a function exists it will contradict Lemma 6.1. Because f ′′

0
is Hölder ∂εR/∂u is bounded away from zero in a neighborhood
of the point. Suppose that in this neighborhood there is only one
zero of f ′

0. Then define g such that g has one sign, is smooth and
has compact support, and such that the |∂H [g]/∂u| < | f ′′

0 | in this
neighborhood. Then for small enough g the function f ′

0 + g will
have two zeros in a neighborhood of the point. Then both of the
crossings will correspond to crossings of negative orientation and
the resulting winding number will be −1, a contradiction. !

Corollary 6.4 If f0 is stable it is impossible for there to be a point where
f ′
0 = 0, f ′′

0 < 0, and H [ f ′
0] > 0.

If f0 is unstable the winding number is positive. In this case it
may be possible for modes with the same signature as the contin-
uum to exist. It is possible for a positive energy mode to be embed-
ded in a section of negative signature and a negative energy mode
to be embedded in a section of positive signature. This situation
is structurally unstable under perturbations that are bounded by
the Cn norm and remains so even when a linear dynamical acces-
sibility constraint is enforced.

Theorem 6.5 Let f ′
0 be the derivative of an equilibrium distribution

function with a discrete mode embedded in the continuous spectrum. Then
there exists an infinitesimal function with compact support in the Cn norm
for each n such that f ′

0 + δ f ′ is unstable.

Proof. Suppose that H [ f ′′
0 ] is nonzero in a neighborhood of the

embedded mode. Define a dynamically accessible perturbation
δ f = h f ′

0. Then assume that f ′′′
0 1= 0 at the mode. If we define

h such that it does not vanish at the mode we find that δ f ′′ =
h′′ f ′

0 + h′ f ′′
0 + h f ′′′

0 and therefore we can choose h such that the
discrete mode becomes a crossing. This can be done with h in-
finitesimal and smooth. The resulting perturbation will have an
infinitesimal effect on f ′

0. The new crossings will cause a violation
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Krein-Like Theorems for Noncanonical Hamiltonian Systems 497

of the Penrose criterion, and therefore the system with the em-
bedded mode is structurally unstable. !

This is an analog of Kreĭn’s theorem for the Vlasov equation for
the case where there is a discrete mode. As a result of this we see
that all discrete modes are either unstable or structurally unstable.

6.2. Little-Big Man Theorem

Consider a linearized equilibrium that supports three discrete
modes. The signature of each mode depends on the reference
frame. There is a result that applies to a number of Hamiltonian
systems, the three-wave problem in particular (Coppi et al., 1969;
Kueny and Morrison, 1995), that gives a condition on the signa-
ture of the modes and their frequencies in some reference frame
such that no frame shift can cause all the modes to have the same
signature. In a shifted frame, the Hamiltonian changes so the fre-
quencies in the action-angle form are doppler shifted. Sometimes
such shifts can render the Hamiltonian sign definite. A result for
finite systems, which we call the little-big man theorem, indicates
that this cannot happen when the mode of different signature
has frequency with largest absolute value. A related result exists
for the point spectrum of the Vlasov equation.

Theorem 6.6 Let f ′
0 be the derivative of an equilibrium distribution

function that has three discrete modes (elements of the point spectrum) with
real frequencies. Consider a reference frame where all the modes have pos-
itive frequency. Then represent the energies of the three modes as a triplet
(± ± ±) where the plus and minus signs correspond to the signature of
each mode, with the first mode being the one with the lowest phase velocity
(ω/k) and the last one with the highest phase velocity. Then, if the triplet
is of the form (+−+ ) or (−+− ) there is no reference frame in which all
the modes have the same signature. If the triplet has any other form, then
there is a reference frame in which all the modes have the same signature.

Proof. The formula for the energy of an embedded mode is
sgn(ω ∂εR/∂ω) (Shadwick and Morrison, 1994). If there are three
embedded modes in a frame where the frequencies are all
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498 G. I. Hagstrom and P. J. Morrison

positive, the triplet is

(

sgn
∂εR

∂ω

∣∣∣∣
ω1

, sgn
∂εR

∂ω

∣∣∣∣
ω2

, sgn
∂εR

∂ω

∣∣∣∣
ω3

)

.

If this is (+ −+ ) then as we shift frames the possible triplets are
(0−+), (−−+), (−0+), (−++), (−+0), (−+−). All of these are
indefinite. The other possibile initially indefinite triplet is (−−+).
However if we shift the two − modes to negative frequency the
triplet becomes (+++). All other examples are either definite or
reduce to one of these two. !

A few observations are in order. First, frame shifts do not
change the structure of Penrose plots, but only induce reparame-
terizations. Next, Theorem 6.6 differs from its finite-dimensional
counterpart in that no restriction on the wave numbers is in-
volved, a necessary part of the three-wave problem. Lastly, we are
not addressing nonlinear stability here, as in the finite dimen-
sional case, but should a frame exist in which the energy is defi-
nite, this is an important first step in a rigorous proof of nonlinear
stability.

6.3. Bifurcation at k = 0

Assume that there are no embedded modes and that f0 is stable,
but that there is a point that has f ′

0 = 0 and H [ f ′
0] = 0. This is

the critical state for a bifurcation at k = 0. This can be destabi-
lized in the same way as the critical state for k 1= 0. There will be
a perturbation that makes H [ f ′

0] < 0 without changing f ′
0 at that

point. Therefore the Penrose plot becomes unstable and the equi-
librium is structurally unstable.

Theorem 6.7 Suppose that f ′
0 is a stable equilibrium distribution func-

tion that has a zero at u of both f ′
0 and H [ f ′

0]. Then f ′
0 is structurally

unstable under perturbations bounded by the Cn norm for all n.

Proof. Let δh be symmetric about the point u, be smooth with com-
pact support and have its first n derivatives less than some ε. Then
let δ f ′

0 = −H [δh]. The resulting perturbation to H [ f ′
0] is h. If h

is positive at u, then by the symmetry of h f ′
0 + δ f ′

0 has a zero at
u and H [ f ′

0] + h is positive there. Thus the Penrose plot has a
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Krein-Like Theorems for Noncanonical Hamiltonian Systems 499

positive winding number and is unstable. Therefore f ′
0 is struc-

turally unstable. !

The previous two sections demonstrated that when the Pen-
rose plot is critical, no amount of regularity is sufficient to
prevent f0 from being structurally unstable. However, when the
Penrose plot is not critical all that is required is that a small per-
turbation only change the Penrose plot by a small amount in ad-
dition to a condition to prevent perturbations near v = ∞. Sup-
pose we arbitrarily restrict the support of the perturbations so that
|v| < vmax . Then if we increase the required regularity such that if
sup(H [δ f ′

0]) is bounded there will be some δ such that for all δ f ′
0

with ‖δ f ′
0‖ < δ the distribution f0 + δ f0 is structurally stable. This

restriction can be motivated physically by restricting the particles
in the distribution function to be travelling slower than the speed
of light.

7. Conclusion

We have considered perturbations of the linearized Vlasov-
Poisson equation through changes in the equilibrium function.
The effect of these perturbations on the spectral stability of the
equations is determined by the class of allowable perturbations
and the signature of the contiuous and point spectra. Every equi-
librium can be made unstable by adding an arbitrarily small func-
tion from the space W 1,1. If we rearrange f0 then only when the
signature of f0 changes sign can an arbitrarily small perturbation
destabilize it. When f0 is stable discrete modes always have the
opposite signature of the spectrum surrounding them. This is the
result of Theorem 6.3. The equilibria are structurally unstable un-
der Cn small perturbations for all n. The signature of the spectrum
and the signature of the discrete mode can never be the same.

This generalization of Kreĭn’s theorem is more complicated
than the finite-dimensional original. However the basic ideas of
Kreĭn’s theorem are still important in the infinite-dimensional
case. When the perturbations are more restricted than just be-
longing to W 1,1 the structural stability is determined by the signa-
ture of the spectrum. Just as in Kreĭn’s theorem there must be a
positive signature interacting with a negative signature to produce
structural instability.
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500 G. I. Hagstrom and P. J. Morrison

This article was devoted primarily to the Vlasov equation, but
other noncanonical Hamiltonian systems admit to a similar treat-
ment, e.g., the 2D Euler equation with shear flow equilibria, and
we hope to chronicle such cases in future publications.
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